Close Friday: 14.7
Close Tues: 15.1, 15.2
Close next Thur: 15.3

Global Max/Min

Consider a surface $z=f(x, y)$ over a particular region R on the $x y$-plane.

An absolute/global maximum over R is the largest z-value over R.
An absolute/global minimum over R is the smallest z-value over R.

Key fact (Extreme value theorem) The absolute max/min occur at either

1. A critical point, or
2. A boundary point.

Example: Let R be the triangular region in the xy-plane with corners at $(0,-1)$, $(0,1)$, and $(2,-1)$. Above this triangular region, find the absolute max and min of

$$
f(x, y)=\frac{1}{4} x+\frac{1}{2} y^{2}-x y+1
$$

Entry Task

Do Step 1: Find the critical points

How to find the absolute max/min

Step 1: Find critical points inside region.
Step 2: Find critical numbers and corners above each boundary.
i) For each boundary, give an equation in terms of x and y. Find intersection with surface.
ii) Find critical numbers and endpoints for this one variable function. Label "corners".

Step 3: Evaluate the function at all points you found in steps 1 and 2.

Biggest output = global max Smallest output = global min

Example:

Find the absolute $\mathrm{max} / \mathrm{min}$ of

$$
f(x, y)=x^{3}-12 x+y^{2}
$$

over the region

$$
x \geq 0, x^{2}+y^{2} \leq 9 .
$$

Homework hints

In applied optimization problems,
(a) Identify what you are optimizing!
(b) Label Everything.
(c) Identify given facts (constraints)
(d) Use the constraints and labels to give a 2 variable function for the objective.

HW Examples:

1. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to $(4,2,0)$.

Objective: Minimize distance from
(x, y, z) points on the cone to the point
$(4,2,0)$ given that $z^{2}=x^{2}+y^{2}$.
2. Find the dimensions of the box with volume $1000 \mathrm{~cm}^{3}$ that has minimum surface area.

Objective: Minimize surface area given that volume is 1000 .
3. You want to build aquariums with slate for the base and glass for the sides (and no top).
Assume slate costs $\$ 5$ per in^{2} and glass costs $\$ 1$ per in ${ }^{2}$. If the volume must be $1000 \mathrm{in}^{3}$, then what dimensions will minimize cost?

Objective: Minimize cost when volume needs to be 1000 .

